Gradient Descent: Takeaways ®

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

* Implementing gradient descent for 10 iterations:
al_list = [1000]
alpha = 10
for x in range(0, 10):
al = al_list[x]
deriv = derivative(al, alpha, xi_list, yi list)
al new = al - alpha*deriv

al_list.append(al_new)

Concepts

* The process of finding the optimal unique parameter values to form a unique linear regression
model is known as model fitting. The goal of model fitting is to minimize the mean squared error
between the predicted labels made using a given model and the true labels. The mean squared
error is as follows:

MSE = . 330 (g — wi)?

e Gradient descent is an iterative technique for minimizing the squared error. Gradient descent
works by trying different parameter values until the model with the lowest mean squared error is
found. Gradient descent is a commonly used optimization technique for other models as well. An
overview of the gradient descent algorithm is as follows:

¢ Select initial values for the parameter a;.
¢ Repeat until convergence (usually implemented with a max number of iterations):
e Calculate the error (MSE) of the model that uses current parameter value:
MSE(a1) = | 31, (9% — y)?
e Calculate the derivative of the error (MSE) at the current parameter value:
d%MSE(al)
e Update the parameter value by subtracting the derivative times a constant (¢,
called the learning rate): a; := a; — ada MSE(ay)
e Univariate case of gradient descent:
* The function that we optimize through minimization is known as a cost function or as the
loss function. In our case, the loss function is: MSE(a;) = % Z?:l(g}(i) - y(i))2

¢ Applying calculus properties to simplify the derivative of the loss function:

¢ Applying the linearity of differentiation property, we can bring the constant term
outside the summation:

& MSE(ar) = L Y0, i (@) —y)2

n i=1 da;
e Using the power rule and the chain rule to simplify:
o d _ i)\ _d i
day MSE(a1) = 5 Dic (alxl y(l))dal (alwg) —y)

® Because we're differentiating with respect to a;, we treat y(i) and a:(li) as constants.

: d%MSE(al) = %Z? 1“"11)(gz) —y®)

https://app.dataquest.io/m/237/
https://app.dataquest.io/m/237/
https://app.dataquest.io/m/237/

e For every iteration of gradient descent:
* The derivative is computed using the current a; value.

* The derivative is multiplied by the learning rate («): ad%llMSE(al) The result is
subtracted from the current parameter value and assigned as the new parameter value:

ap :=a; — ad%lMSE(al)
¢ Multivariate case of gradient descent:
* When we have two parameter values (ag and a), the cost function is now a function of
two variables instead of one. Our new cost function is: MSE(ag,a1) = = Y% (ag +
wal) — 0y
* We also need two update rules:
°qp:=ap — ad%i)MSE(ao,al)
cay:=a; — ad%zMSE(ao,al)
e Computed derivative for the multivariate case:
. d%lMSE(aO, a;) = % Z:.L:l a:(li)(ag + almgi) — y(i))

e Gradient descent scales to as many variables as you want. Keep in mind each parameter value
will need its own update rule, and it closely matches the update for a;. The derivative for other
parameters are also identical.

¢ Choosing good initial parameter values, and choosing a good learning rate are the main
challenges with gradient descent.

Resources

e Mathematical Optimization

¢ | 0ss Function

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Loss_function
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Gradient Descent: Takeaways
	Syntax
	Concepts
	Resources

