
Cleaning and Preparing Data in
Python: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

TRANSFORMING AND CLEANING STRINGS

Concepts

Replace a substring within a string:

green_ball = "red ball".replace("red", "green")

•

Remove a substring:

friend_removed = "hello there friend!".replace(" friend", "")

•

Remove a series of characters from a string:

bad_chars = ["'", ",", ".", "!"]

string = "We'll remove apostrophes, commas, periods, and exclamation marks!"

for char in bad_chars:

 string = string.replace(char, "")

•

Convert a string to title cases:

Hello = "hello".title()

•

Check a string for the existence of a substring:

if "car" in "carpet":

 print("The substring was found.")

else:

 print("The substring was not found.")

•

Split a string into a list of strings:

split_on_dash = "1980-12-08".split("-")

•

Slice characters from a string by position:

first_five_chars = "This is a long string."[:5]

•

Concatenate strings:

superman = "Clark" + " " + "Kent"

•

When working with comma-separated value (CSV) data in Python, it's common to have your data

in a "list of lists" format, where each item of the internal lists is a string.

•

If you have numeric data stored as strings, sometimes you will need to remove and replace

certain characters before you can convert the strings to numeric types, like int and float .

•

Strings in Python are made from the same underlying data type as lists, which means you can

index and slice specific characters from strings like you can lists.

•

https://app.dataquest.io/m/351/
https://app.dataquest.io/m/351/
https://app.dataquest.io/m/351/

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Python Documentation: String Methods•

https://docs.python.org/3/library/stdtypes.html#string-methods
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Cleaning and Preparing Data in Python: Takeaways
	Syntax
	TRANSFORMING AND CLEANING STRINGS

	Concepts
	Resources

