
Building a Pipeline Class: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Resources

Adding an arbitrary number of arguments:

def add(*args):

 parent_args = args

 def inner(*inner_args):

 return sum(parent_args + inner_args)

 return inner

add_nine = add(1, 3, 5)

print(add_nine(2, 4, 6))

 # prints 21

•

Using a decorator:

def logger(func):

 def inner(*args):

 print('Calling function: {}'.format(func.__name__))

 print('With args: {}'.format(args))

 return func(*args)

 return inner

@logger

def add(a, b):

 return a + b

print(add(1, 2))

 # 'Calling function: add'

 # 'With args: (1, 2)'

 # 3

•

An inner function is a function within a function. The benefit of these inner functions is that they

are encapsulated in the scope of the parent function.

•

A closure is defined by an inner function that has access to its parent's variables. We can pass

any number of arguments from the parent function down to the inner function using the *

character.

•

A decorator is a Python callable object that modifies the behavior of any function, method, or

class.

•

The StringIO object mimics a file-like object that keeps a file-like object in memory.•

io module•

A guide to Python's function decorators•

https://app.dataquest.io/m/265/
https://app.dataquest.io/m/265/
https://app.dataquest.io/m/265/
https://docs.python.org/3/library/io.html
https://www.thecodeship.com/patterns/guide-to-python-function-decorators/

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Building a Pipeline Class: Takeaways
	Syntax
	Concepts
	Resources

