
Process Pool Executors: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Breaking a DataFrame into chunks:

def make_chunks(df, num_chunks):

 chunk_size = math.ceil(df.shape[0] / num_chunks)

 return [df[i:i+chunk_size] for i in range(0, df.shape[0], chunk_size)]

•

Using a process pool executor:

import concurrent.futures

def mul_string(string, times):

 return string * times

strings = ["a", "b", "c", "d"]

times = 3

with concurrent.futures.ProcessPoolExecutor() as executor:

 futures = [executor.submit(mul_string, string, times) for string in strings] # Create

and run the processes

results = [future.result() for future in futures] # Gather the results

•

Merging a list of dictionaries into a single one:

merged_dict = {}

for dictionary in dictionary_list:

 merged_dict.update(dictionary)

•

The concurrent.futures module provides a way to execute functions inside processes and get

the result.

•

Parallel processing can greatly improve the performance of a data processing task.•

If the data fits in memory, we are better of splitting it after we load it rather than reading it in

chunks. However, more often than not, the data doesn't fit into memory. In this case, we can

combine what we've learned in the previous course with this lesson to both reduce the memory

footprint and accelerate the calculations.

•

Processing Pool Executor•

MapReduce.•

https://app.dataquest.io/m/566/
https://app.dataquest.io/m/566/
https://app.dataquest.io/m/566/
https://docs.python.org/3/library/concurrent.futures.html?highlight=processpoolexecutor#concurrent.futures.ProcessPoolExecutord
https://en.wikipedia.org/wiki/MapReduce
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Process Pool Executors: Takeaways
	Syntax
	Concepts
	Resources

