
Exception Handling: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Handling an exception using a try-except block:

try:

 impossible_value = int("Not an integer")

except ValueError:

 print("Cannot convert string to integer")

•

Catching multiple types of exceptions:

try:

 f = open("data.txt", "r")

 s = f.readline()

 i = float(s)

except ValueError:

 print("Cannot convert data to floating point value")

except IOError:

 print("Could not read file")

•

Errors can be quite useful to us because they tell us what went wrong with our code.•

Exception handling comes into play when we want to handle errors gracefully so our program

doesn't crash.

•

An exception is a broad characterization of what can go wrong with a program. Exceptions occur

during the execution of a program whereas syntax errors will cause your code not to run at all.

•

In a try-except block, Python will attempt to execute the try section of the statement. If Python

raises an exception, the code in the except statement will execute.

•

While you have the ability to catch any exception without specifying a particular error in the

except: section, not specifying an error is sometimes dangerous as you won't be able to

execute exception-specific logic.

•

Why a try-except block is useful in Python•

Errors and Exceptions•

https://app.dataquest.io/m/48/
https://app.dataquest.io/m/48/
https://app.dataquest.io/m/48/
https://www.quora.com/Why-is-try-except-error-handling-useful-in-Python
https://docs.python.org/3/tutorial/errors.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Exception Handling: Takeaways
	Syntax
	Concepts
	Resources

