
Performance Boosts of Using a B-Tree
II: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Creating a simple B-Tree:

class Node:

 def __init__(self, keys=None, children=None):

 self.keys = keys or []

 self.children = children or []

 def is_leaf(self):

 return len(self.children) == 0

def __repr__(self):

 # Helpful method to keep track of Node keys.

 return "".format(self.keys)

class BTree:

 def __init__(self, t):

 self.t = t

 self.root = None

 def insert_multiple(self, keys):

 for key in keys:

 self.insert(key)

•

Loading the contents of a csv into a B-Tree:

with open('amounts.csv', 'r') as f:

 reader = csv.reader(f)

 next(reader)

values = [float(l[0]) for l in reader]

btree = BTree(5)

btree.insert_multiple(values)

•

Using the pickle module to save and load a B-tree:

import pickle

 # Save the model.

with open('btree_example.pickle', 'wb') as f:

 pickle.dump(btree, f)

 # Load the model.

with open('btree_example.pickle', 'rb') as f:

 new_btree = pickle.load(f)

•

Time complexity for loading in data into a B-Tree is .• O(n log(n))

The pickle module allows us to save a B-Tree model and then load it every time we want to run a

range query.

•

https://app.dataquest.io/m/233/
https://app.dataquest.io/m/233/
https://app.dataquest.io/m/233/

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

The pickle module serializes Python objects into a series of bytes and then writes it out into a

Python readable format (but not human readable).

•

Pickle module•

https://docs.python.org/3/library/pickle.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Performance Boosts of Using a B-Tree II: Takeaways
	Syntax
	Concepts
	Resources

