Cross Validation: Takeaways &

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

* Implementing holdout validation:

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error

train_one = split_one

test_one = split_two

train_two = split_two

test_two = split_one

model = KNeighborsRegressor()

model.fit(train_one[["accommodates"]], train_one["price"])
test_one["predicted price"] = model.predict(test_one[["accommodates"]])
iteration_one_rmse = mean_squared_error(test_one["price"],
test_one["predicted _price"])**(1/2)
model.fit(train_two[["accommodates"]], train_two["price"])
test_two["predicted_price"] = model.predict(test_two[["accommodates™"]])
iteration_two_rmse = mean_squared_error(test_two["price"],
test_two["predicted _price"])**(1/2)

avg_rmse = np.mean([iteration_two_rmse, iteration_one_rmse])

* Implementing k-fold cross validation:
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
model = KNeighborsRegressor()
train_iteration_one = dc_listings[dc_listings["fold"] != 1]

test_iteration_one = dc_listings[dc_listings["fold"] == 1].copy()

model. fit(train_iteration_one[["accommodates"]], train_iteration_one["price"])

labels = model.predict(test_iteration_one[["accommodates"]1])
test_iteration_one["predicted_price"] = labels

iteration_one_mse = mean_squared_error(test_iteration_one["price"],
test_iteration_one["predicted_price"])

iteration_one_rmse = iteration_one_mse ** (1/2)

* Instantiating an instance of the KFold class from sklearn.model_selection:
from sklearn.model_selection import cross_val_score, KFold
kf = KFold(5, shuffle=True, random_state=1)

* Implementing cross_val_score along with the KFold class:

from sklearn.model_selection import cross_val_score

model = KNeighborsRegressor ()

mses = cross_val_score(model, dc_listings[["accommodates"]], dc_listings["price"],

scoring="neg_mean_squared_error", cv=kf)

https://app.dataquest.io/m/154/
https://app.dataquest.io/m/154/
https://app.dataquest.io/m/154/

Concepts

¢ Holdout validation is a more robust technique for testing a machine learning model's accuracy on
new data the model wasn't trained on. Holdout validation involves:

¢ Splitting the full data set into two partitions:
¢ A training set.
¢ A test set.
¢ Training the model on the training set.
¢ Using the trained model to predict labels on the test set.
e Computing an error to understand the model's effectiveness.
e Switching the training and test sets and repeat.
e Averaging the errors.

¢ In holdout validation, we use a 50/50 split instead of the 75/25 split from train/test validation to
eliminate any sort of bias towards a specific subset of data.

¢ Holdout validation is a specific example of k-fold cross-validation, which takes advantage of a
larger proportion of the data during training while still rotating through different subsets of the
data, when k is set to two.

» K-fold cross-validation includes:
* Splitting the full data set into k equal length partitions:
* Selecting k-1 partitions as the training set.
* Selecting the remaining partition as the test set.
 Training the model on the training set.
¢ Using the trained model to predict labels on the test fold.
e Computing the test fold's error metric.

* Repeating all of the above steps k-1 times, until each partition has been used as the
test set for an iteration.

* Calculating the mean of the k error values.
e The parameters for the KFold class are:
* n_splits : The number of folds you want to use.
* shuffle : Toggle shuffling of the ordering of the observations in the data set.
* random_state :Specify the random seed value if shuffle issetto True .
* The parameters for using cross_val _score are:

* estimator : Scikit-learn model that implements the fit method (e.g. instance of
KNeighborsRegressor).

* X :The list or 2D array containing the features you want to train on.

¢ y :Alist containing the values you want to predict (target column).

* scoring : A string describing the scoring criteria.

* cv : The number of folds. Here are some examples of accepted values:
* An instance of the KFold class.

¢ An integer representing the number of folds.

¢ The workflow for k-fold cross-validation with scikit-learn includes:
¢ Instantiating the scikit-learn model class you want to fit.

¢ Instantiating the KFold class and using the parameters to specify the k-fold cross-
validation attributes you want.

* Using the cross_val_score() function to return the scoring metric you're interested in.

* Bias describes error that results in bad assumptions about the learning algorithm. Variance
describes error that occurs because of the variability of a model's predicted value. In an ideal
world, we want low bias and low variance when creating machine learning models.

Resources

¢ Accepted values for scoring criteria

¢ Bias-variance Trade-off

¢ K-Fold cross-validation documentation

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

http://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Cross Validation: Takeaways
	Syntax
	Concepts
	Resources

