Overcoming The Limitations Of
Threads: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

* Turning a Python object into bytecode:
def myfunc(alist):
return len(alist)

dis.dis(myfunc)

* Processing objects to represent activity that is run in a separate process:
import multiprocessing
def task(email):
print(email)
process = multiprocessing.Process(target=task, args=(email,))
process.start()

process.join()

* Using the Pipe class to pipe data between processes:

import multiprocessing

def echo_email(email, conn):

Sends the email through the pipe to the parent process.
conn.send(email)

Close the connection, since the process will terminate.

conn.close()

Creates a parent connection (which we'll use in this thread), and a child connection
(which we'll pass in).

parent_conn, child_conn = multiprocessing.Pipe()

Pass the child connection into the child process.

p = multiprocessing.Process(target=echo_email, args=(email, child_conn,))
Start the process.

p.start()

Block until we get data from the child.
print(parent_conn.recv())

Wait for the process to finish.

p.join()

* Creating a Pool of processes:

from multiprocessing import Pool
Create a pool of workers.

p = Pool(5)

Concepts

e The GIL (Global Interpreter Lock) in Cpython only allows one thread at a time to execute Python
code using a locking mechanism.

&

https://app.dataquest.io/m/170/
https://app.dataquest.io/m/170/
https://app.dataquest.io/m/170/

¢ Python enables us to write at a high abstraction layer, which means that code can be extremely
terse, but still achieve a lot.

* Threading can speed up I/O bound programs since the GIL only applies to executing Python code.

* The GIL gets released when we do I/O operations, but can also get released in situations where
you're calling external libraries that have significant components written in other languages that
aren't bounded by the GIL.

e Threads are good for situations where you have long-running I/O bound tasks but they aren't so
good where you have CPU-bound tasks or you have tasks that will run very quickly.

¢ Processes are best when your task is CPU bound or when your task will take long enough.

e Threads run inside processes and each process has its own memory, and all the threads inside
share the same memory.

* One thread can be running inside each Python interpreter at a time, so starting multiple
processes enables us to avoid the GIL.

e Creating a process is a relatively "heavy" operation, and takes time. Threads, since they're inside
processes, are much faster to make.

e Deadlocks happen when two threads or processes both require a lock that the other process has
before proceeding.

Resources

e CPython

e Global Interpreter Lock

e Multiprocessing library

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

https://en.wikipedia.org/wiki/CPython
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/multiprocessing.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Overcoming The Limitations Of Threads: Takeaways
	Syntax
	Concepts
	Resources

