Logarithmic Time Complexity:

Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

® Sorting a list:

sorted_values = sorted(values)

® Binary search:
def binary_search(sorted_values, target_value):
range_start = 0
range_end = len(sorted_values) - 1
while range_start < range_end:
range_middle = (range_end + range_start) // 2
value = sorted _values[range _middle]
if value == target_value:
return range_middle
elif value < target_value:
range_start = range_middle + 1
else:
range_end = range_middle - 1
if sorted_values[range_start] != target_value:
return -1

return range_start

* Compute the base-b logarithm of N:

import math

base_b_log N = math.log(N, b)

Concepts

* The number of times we need to divide a value N by 2 in order to reach 1 is called the base-2

logarithm of N.

¢ When data is unsorted, we cannot do better than linear time complexity for looking up an

element in a list.

&

e Algorithms with logarithmic complexity are very efficient. Their runtime grows very slowly as the
data grows. Using binary search to search into 1 TB sorted list of integers would require only 34

list lookups.

Resources

¢ |ntroduction to logarithms

e Logarithms

e Binary search algorithm



https://app.dataquest.io/m/478/
https://app.dataquest.io/m/478/
https://app.dataquest.io/m/478/
https://www.mathsisfun.com/algebra/logarithms.html
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Binary_search_algorithm

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021


https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Logarithmic Time Complexity: Takeaways
	Syntax
	Concepts
	Resources


