
Quickly Analyzing Data With Parallel
Processing: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Creating a pool of threads:

import concurrent.futures

def word_length(word):

 return len(word)

pool = concurrent.futures.ThreadPoolExecutor(max_workers=10)

lengths = pool.map(word_length, ["Hello", "are", "you", "thinking", "of", "becoming", "a",

"polar", "bear", "?"])

•

Creating a pool of processes:

import concurrent.futures

def word_length(word):

 return len(word)

pool = concurrent.futures.ProcessPoolExecutor(max_workers=10)

lengths = pool.map(word_length, ["Hello", "are", "you", "thinking", "of", "becoming", "a",

"polar", "bear", "?"])

•

The threading and multiprocessing packages are widely used and give you more low-level

control.

•

The concurrent.futures package allows for a simple and consistent interface for both threads

and processes.

•

concurrent.features.ThreadPoolExecutor.map() method returns a generator, but you can just call

it using list to force it to evaluate.

•

Threads and processes are using a paradigm called MapReduce, which is utilized in data

processing tools like Apache Hadoop and Apache Spark.

•

Debugging using the multiprocessing module•

Documentation for concurrent.features module•

https://app.dataquest.io/m/171/
https://app.dataquest.io/m/171/
https://app.dataquest.io/m/171/
https://docs.python.org/3/library/multiprocessing.html#logging
https://docs.python.org/3/library/concurrent.futures.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Quickly Analyzing Data With Parallel Processing: Takeaways
	Syntax
	Concepts
	Resources

