
Cross Validation: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Implementing holdout validation:

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error

train_one = split_one

test_one = split_two

train_two = split_two

test_two = split_one

model = KNeighborsRegressor()

model.fit(train_one[["accommodates"]], train_one["price"])

test_one["predicted_price"] = model.predict(test_one[["accommodates"]])

iteration_one_rmse = mean_squared_error(test_one["price"],

test_one["predicted_price"])**(1/2)

model.fit(train_two[["accommodates"]], train_two["price"])

test_two["predicted_price"] = model.predict(test_two[["accommodates"]])

iteration_two_rmse = mean_squared_error(test_two["price"],

test_two["predicted_price"])**(1/2)

avg_rmse = np.mean([iteration_two_rmse, iteration_one_rmse])

•

Implementing k-fold cross validation:

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error

model = KNeighborsRegressor()

train_iteration_one = dc_listings[dc_listings["fold"] != 1]

test_iteration_one = dc_listings[dc_listings["fold"] == 1].copy()

model.fit(train_iteration_one[["accommodates"]], train_iteration_one["price"])

labels = model.predict(test_iteration_one[["accommodates"]])

test_iteration_one["predicted_price"] = labels

iteration_one_mse = mean_squared_error(test_iteration_one["price"],

test_iteration_one["predicted_price"])

iteration_one_rmse = iteration_one_mse ** (1/2)

•

Instantiating an instance of the KFold class from sklearn.model_selection:

from sklearn.model_selection import cross_val_score, KFold

kf = KFold(5, shuffle=True, random_state=1)

•

Implementing cross_val_score along with the KFold class:

from sklearn.model_selection import cross_val_score

model = KNeighborsRegressor()

mses = cross_val_score(model, dc_listings[["accommodates"]], dc_listings["price"],

scoring="neg_mean_squared_error", cv=kf)

•

https://app.dataquest.io/m/154/
https://app.dataquest.io/m/154/
https://app.dataquest.io/m/154/

Concepts

Holdout validation is a more robust technique for testing a machine learning model's accuracy on

new data the model wasn't trained on. Holdout validation involves:

•

Splitting the full data set into two partitions:•

A training set.•

A test set.•

Training the model on the training set.•

Using the trained model to predict labels on the test set.•

Computing an error to understand the model's effectiveness.•

Switching the training and test sets and repeat.•

Averaging the errors.•

In holdout validation, we use a 50/50 split instead of the 75/25 split from train/test validation to

eliminate any sort of bias towards a specific subset of data.

•

Holdout validation is a specific example of k-fold cross-validation, which takes advantage of a

larger proportion of the data during training while still rotating through different subsets of the

data, when k is set to two.

•

K-fold cross-validation includes:•

Splitting the full data set into k equal length partitions:•

Selecting k-1 partitions as the training set.•

Selecting the remaining partition as the test set.•

Training the model on the training set.•

Using the trained model to predict labels on the test fold.•

Computing the test fold's error metric.•

Repeating all of the above steps k-1 times, until each partition has been used as the

test set for an iteration.

•

Calculating the mean of the k error values.•

The parameters for the KFold class are:•

n_splits : The number of folds you want to use.•

shuffle : Toggle shuffling of the ordering of the observations in the data set.•

random_state : Specify the random seed value if shuffle is set to True .•

The parameters for using cross_val_score are:•

estimator : Scikit-learn model that implements the fit method (e.g. instance of

KNeighborsRegressor).

•

X : The list or 2D array containing the features you want to train on.•

y : A list containing the values you want to predict (target column).•

scoring : A string describing the scoring criteria.•

cv : The number of folds. Here are some examples of accepted values:•

An instance of the KFold class.•

An integer representing the number of folds.•

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

The workflow for k-fold cross-validation with scikit-learn includes:•

Instantiating the scikit-learn model class you want to fit.•

Instantiating the KFold class and using the parameters to specify the k-fold cross-

validation attributes you want.

•

Using the cross_val_score() function to return the scoring metric you're interested in.•

Bias describes error that results in bad assumptions about the learning algorithm. Variance

describes error that occurs because of the variability of a model's predicted value. In an ideal

world, we want low bias and low variance when creating machine learning models.

•

Accepted values for scoring criteria•

Bias-variance Trade-off•

K-Fold cross-validation documentation•

http://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Cross Validation: Takeaways
	Syntax
	Concepts
	Resources

