
Object-Oriented Programming:
Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Creating a class:

class Class:

def __init__(self, team_name):

 self.team_name = team_name

•

Creating an instance of a class:

spurs = Team("San Antonio Spurs")

•

Defining a class method:

@classmethod

def older_team(self, team1, team2):

 return "Not yet implemented"

•

In object-oriented programming, everything is an object. Classes and instances are known as

objects and they're a fundamental part of object-oriented programming.

•

The special __init__ function runs whenever a class is instantiated. The __init__ function

can take in parameters, but self is always the first one. Self is just a reference to the instance of

the class and is automatically passed in when you instantiate an instance of the class.

•

Inheritance enables you you to organize classes in a tree-like hierarchy. Inheriting from a class

means that the new class can exhibit behavior of the inherited class but also define its own

additional behavior.

•

Class methods act on an entire class rather than a particular instance of a class. We often use

them as utility functions.

•

Overloading is a technique used to modify a inherited class to ensure not all behavior is

inherited. Overloading methods gives access to powerful functions without having to implement

tedious logic.

•

Object-oriented Programming•

Documentation for classmethod•

https://app.dataquest.io/m/39/
https://app.dataquest.io/m/39/
https://app.dataquest.io/m/39/
https://en.wikipedia.org/wiki/Object-oriented_programming
https://docs.python.org/3/library/functions.html#classmethod
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Object-Oriented Programming: Takeaways
	Syntax
	Concepts
	Resources

