
Overcoming The Limitations Of
Threads: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Turning a Python object into bytecode:

def myfunc(alist):

 return len(alist)

dis.dis(myfunc)

•

Processing objects to represent activity that is run in a separate process:

import multiprocessing

def task(email):

 print(email)

 process = multiprocessing.Process(target=task, args=(email,))

 process.start()

 process.join()

•

Using the Pipe class to pipe data between processes:

import multiprocessing

def echo_email(email, conn):

 # Sends the email through the pipe to the parent process.

conn.send(email)

 # Close the connection, since the process will terminate.

conn.close()

 # Creates a parent connection (which we'll use in this thread), and a child connection

(which we'll pass in).

parent_conn, child_conn = multiprocessing.Pipe()

 # Pass the child connection into the child process.

p = multiprocessing.Process(target=echo_email, args=(email, child_conn,))

 # Start the process.

p.start()

 # Block until we get data from the child.

print(parent_conn.recv())

 # Wait for the process to finish.

p.join()

•

Creating a Pool of processes:

from multiprocessing import Pool

 # Create a pool of workers.

p = Pool(5)

•

The GIL (Global Interpreter Lock) in Cpython only allows one thread at a time to execute Python

code using a locking mechanism.

•

https://app.dataquest.io/m/170/
https://app.dataquest.io/m/170/
https://app.dataquest.io/m/170/

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Python enables us to write at a high abstraction layer, which means that code can be extremely

terse, but still achieve a lot.

•

Threading can speed up I/O bound programs since the GIL only applies to executing Python code.•

The GIL gets released when we do I/O operations, but can also get released in situations where

you're calling external libraries that have significant components written in other languages that

aren't bounded by the GIL.

•

Threads are good for situations where you have long-running I/O bound tasks but they aren't so

good where you have CPU-bound tasks or you have tasks that will run very quickly.

•

Processes are best when your task is CPU bound or when your task will take long enough.•

Threads run inside processes and each process has its own memory, and all the threads inside

share the same memory.

•

One thread can be running inside each Python interpreter at a time, so starting multiple

processes enables us to avoid the GIL.

•

Creating a process is a relatively "heavy" operation, and takes time. Threads, since they're inside

processes, are much faster to make.

•

Deadlocks happen when two threads or processes both require a lock that the other process has

before proceeding.

•

CPython•

Global Interpreter Lock•

Multiprocessing library•

https://en.wikipedia.org/wiki/CPython
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/multiprocessing.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Overcoming The Limitations Of Threads: Takeaways
	Syntax
	Concepts
	Resources

