
Debugging Postgres Queries: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Concepts

Returning a query plan:

conn = psycopg2.connect(dbname="dq", user="hud_admin", password="abc123")

cur = conn.cursor()

cur.execute("EXPLAIN SELECT * FROM homeless_by_coc;")

print(cur.fetchall())

•

Formating the query plan of a query:

EXPLAIN (format json)

SELECT COUNT(*)

FROM homeless_by_coc

WHERE year > '2012-01-01';

•

Returning actual run time statistics of a query:

EXPLAIN (ANALYZE, FORMAT json)

SELECT COUNT(*)

FROM homeless_by_coc

WHERE year > '2012-01-01';

•

Reverting any changes made to the database:

import psycopg2

conn = psycopg2.connect(dbname="dq", user="hud_admin", password="abc123")

cur = conn.cursor()

 # Modifying change to the database.

cur.execute("EXPLAIN ANALYZE ALTER TABLE state_info ADD COLUMN notes text")

 # Reverting the change.

conn.rollback()

•

Executing an inner join in Postgres:

EXPLAIN (ANALYZE, FORMAT json)

SELECT hbc.state, hbc, coc_number, hbc.coc_name, si.name

FROM homeless_by_coc AS hbc, state_info AS si

WHERE hbc.state = si.postal");

•

Path of a query:•

The query is parsed for correct syntax. If there are any errors, the query does not execute

and you receive an error message. If error-free, then the query is transformed into a query

tree.

•

A rewrite system takes the query tree and checks against the system catalog internal

tables for any special rules. Then, if there are any rules, it rewrites them into the query

tree.

•

https://app.dataquest.io/m/259/
https://app.dataquest.io/m/259/
https://app.dataquest.io/m/259/

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

The rewritten query tree is then processed by the planner/optimizer which creates a query

plan to send to the executor. The planner ensures that this is the fastest possible route for

query execution.

•

The executor takes in the query plan, runs each step, then returns back any rows it found.•

The EXPLAIN command examines the query at the third step in the path.•

The ANALYZE option of the EXPLAIN command executes the query are returns additional

information about the actual time the query took to execute. It is important to keep in mind that,

since the query is executed when we use the ANALYZE option, the database will be changed if

the query does so.

•

If we are only using ANALYZE to debug queries, we can use the connection.rollback() function

to cancel its effects.

•

For any query, there are multiple paths leading to the same answer and the paths keep

increasing as the complexity of a query grows.

•

Query plans are a Seq Scan , which means the executor will loop through every row one at a

time.

•

You can format the query plan in the following formats:•

Text•

XML•

JSON•

YAML•

Both Startup Cost and Total Cost are estimated values that are measured as an arbitrary

unit of time.

•

Startup Cost represents the time it takes before a row can be returned.•

Total Cost includes Startup Cost and is the total time it takes to run the node plan

until completion.

•

Joins are computationally expensive to perform and the biggest culprit in delaying execution

time.

•

Before a join can occur, a Seq Scan is performed on each joined table. These operations can

quickly become inefficient as the size of the tables increase.

•

Postgres EXPLAIN statement•

Full table scan•

Internals of Postgres•

https://www.postgresql.org/docs/12/sql-explain.html
https://en.wikipedia.org/wiki/Full_table_scan
http://www.interdb.jp/pg/pgsql03.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Debugging Postgres Queries: Takeaways
	Syntax
	Concepts
	Resources

