
Implementing a CSV Index with a B-
Tree: Takeaways

 

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

CSV index implementation:

class CSVIndex(BTree):

    def __init__(self, split_threshold, csv_filename, col_name):

        super().__init__(split_threshold)

        self.col_name = col_name

        with open(csv_filename) as file:

            rows = list(csv.reader(file))

            header = rows[0]

            rows = rows[1:]

            col_index = header.index(col_name)

            for row in rows:

                self.add(float(row[col_index]), row)           

    def _range_query(self, range_start, range_end, current_node, min_key, max_key):

        if range_start > max_key or range_end < min_key:

            return []

        results = []

        for i, key in enumerate(current_node.keys):

            if range_start <= key and key <= range_end:

                results.append(current_node.values[i])

        if not current_node.is_leaf():

            for i, child in enumerate(current_node.children):

                new_min_key = current_node.keys[i - 1] if i > 0 else min_key

                new_max_key = current_node.keys[i] if i < len(current_node) else max_key

                results += self._range_query(range_start, range_end, child, new_min_key, 

new_max_key)

        return results 

    def range_query(self, range_start, range_end):

        return self._range_query(range_start, range_end, self.root, float('-inf'), 

float('inf'))

    def save(self, filename):

        with open('{}.pickle'.format(filename), 'wb') as f:

            pickle.dump(self, f)        

    @staticmethod

    def load(filename): 

        with open('{}.pickle'.format(filename), 'rb') as f:

            return pickle.load(f)

•

https://app.dataquest.io/m/519/
https://app.dataquest.io/m/519/
https://app.dataquest.io/m/519/


Concepts

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

A B-tree stores unique keys. When we use non-unique keys, we lose the performance guarantees

for range queries. More specifically, with unique keys, we're sure that a range query will never

visit a subtree that doesn't contain query results.

•

With unique keys, the time complexity of a range query is O(min(n, r × log(n))), where r is the

number of query results, and n the height of the tree.

•

The split threshold is important. Increasing it makes processing each node slower, but it also

reduces the number of nodes. Finding the right balance is key for high-performance indexes.

•

B-trees are particularly suited for storage on disk. Having large nodes reduces the number of

disk reads but slows down the search.

•

The time complexity of building a B-tree with n nodes is O(n log(n)).•

Postgres B-tree blog post•

Postgres B-tree documentation•

B+ trees•

pickle module•

https://ieftimov.com/post/postgresql-indexes-btree/#:~:text=Well%2C%20a%20B%2DTree%20is,of%20the%20nodes%20will%20hold.
https://www.postgresql.org/docs/11/btree.html
https://en.wikipedia.org/wiki/B%2B_tree
https://docs.python.org/3/library/pickle.html
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Implementing a CSV Index with a B-Tree: Takeaways
	Syntax
	Concepts
	Resources


