
Overview of Recursion: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2021

Syntax

Recursive sum algorithm:

def recursive_sum(values):

 # Base case: the list is empty

 if not values:

 return 0

 # General case: the list is not empty

 return values[0] + recursive_sum(values[1:])

•

Solving the Tower of Hanoi puzzle:

def solve_hanoi(num_disks, first_peg, middle_peg, last_peg):

 if num_disks == 1:

 # Base case

 print("Move the top disk from peg {} to peg {}.".format(first_peg, last_peg))

 else:

 # General Case

 solve_hanoi(num_disks - 1, first_peg, last_peg, middle_peg)

 solve_hanoi(1, first_peg, middle_peg, last_peg)

 solve_hanoi(num_disks - 1, middle_peg, first_peg, last_peg)

•

Recursively listing files in a directory:

def list_files(current_path):

 #Base case

 if not os.path.isdir(current_path):

 print(current_path)

 else:

 # General case

 for fn in os.listdir(current_path):

 fn_path = os.path.join(current_path, fn)

 list_files(fn_path)

•

Implementing merge sort:

```

Merge function
def merge_sorted_lists(list1, list2): index1 = 0 index2 = 0 merged_list = [] # Collect the font

value while both lists are not empty while index1 < len(list1) and index2 < len(list2): if

list1[index1] < list2[index2]: merged_list.append(list1[index1]) index1 += 1 else:

merged_list.append(list2[index2]) index2 += 1 # Add remaining values merged_list +=

list1[index1:] merged_list += list2[index2:] return merged_list

•

https://app.dataquest.io/m/578/
https://app.dataquest.io/m/578/
https://app.dataquest.io/m/578/


Concepts

Resources

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2021

Merge sort function
def merge_sort(values): # Base case if len(values) < 2: return values # General case midpoint =

len(values) // 2 first_half = merge_sort(values[:midpoint]) second_half =

merge_sort(values[midpoint:]) return merge_sorted_lists(first_half, second_half) ```

Recursion commonly refers to a function that calls itself.•

A base case prevents recursion from continuing forever.•

The base case is necessary to ensure your program doesn't run out of memory.•

A call stack is a stack data structure that stores information about the active subroutines of a

computer program.

•

A stack overflow occurs if the call stack pointer exceeds the stack bound. Stack overflow is a

common cause of infinite recursion.

•

To solve a problem recursively, we need to express it as a combination of solutions to smaller

instances of the same problem. We stop decomposing the problem when the problem becomes

small enough that we can solve it directly. This is the base.

•

The goal of the merge sort algorithm is to first divide up an unsorted list into a bunch of smaller

sorted lists and then merge them all to create a sorted list.

•

The time complexity for merge sort is O(n × log(n)).•

Recursion•

Towers of Hanoi•

Master theorem•

Merge Sort Algorithm•

https://www.geeksforgeeks.org/recursion/
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
https://www.tutorialspoint.com/data_structures_algorithms/merge_sort_algorithm.htm
https://dataquest.io
https://dataquest.io
https://dataquest.io
https://dataquest.io

	Overview of Recursion: Takeaways
	Syntax

	Merge function
	Merge sort function
	Concepts
	Resources


